Electrical load forecasting through long short term memory

نویسندگان

چکیده

For a power supplier, meeting demand-supply equilibrium is of utmost importance. Electrical energy must be generated according to demand, as large amount electrical cannot stored. the proper functioning supply system, an adequate model for predicting load necessity. In present world, in almost every industry, whether it healthcare, agriculture, and consulting, growing digitization automation prominent feature. As result, sets data related these industries are being generated, which when subjected rigorous analysis, yield out-of-the-box methods optimize business services offered. This paper aims ascertain viability long short term memory (LSTM) neural networks, recurrent network capable handling both long-term short-term dependencies sets, that met by Dispatch Center located major city. The result shows appreciable accuracy forecasting future demand.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short - Term Load Forecasting

This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...

متن کامل

Short-term Load Forecasting Method

Based on Wavelet and Reconstructed Phase Space Zunxiong Liu, Zhijun Kuang, Deyun Zhang 1.Dept. of Information and Communication Eng, Xi’an Jiaotong University. Xi’an, Shanxi, China. 2.Dept. of Information Eng, East China Jiaotong University. Nanchang, Jiangxi, China Abstract: This paper proposed wavelet combination method for short-term forecasting, which makes merit of wavelet decomposition an...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Time Series Forecasting Based on Augmented Long Short-Term Memory

In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...

متن کامل

Artificial Neural Network and ANFIS Based Short Term Load Forecasting in Real Time Electrical Load Environment

An efficient and accurate electrical power Short Term Load forecasting plays a vital role for economic operational planning of both the electricity markets as well as regulated power systems. Till date many techniques and approaches have been presented for STLF in the literature. However there is still an essential need to develop more efficient and accurate load forecast model. This paper uses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science

سال: 2022

ISSN: ['2502-4752', '2502-4760']

DOI: https://doi.org/10.11591/ijeecs.v25.i1.pp42-50